Glycerol-3-Phosphate Acyltransferase 1 Deficiency in ob/ob Mice Diminishes Hepatic Steatosis but Does Not Protect Against Insulin Resistance or Obesity

نویسندگان

  • Angela A. Wendel
  • Lei O. Li
  • Yue Li
  • Gary W. Cline
  • Gerald I. Shulman
  • Rosalind A. Coleman
چکیده

OBJECTIVE Hepatic steatosis is strongly associated with insulin resistance, but a causal role has not been established. In ob/ob mice, sterol regulatory element binding protein 1 (SREBP1) mediates the induction of steatosis by upregulating target genes, including glycerol-3-phosphate acyltransferase-1 (Gpat1), which catalyzes the first and committed step in the pathway of glycerolipid synthesis. We asked whether ob/ob mice lacking Gpat1 would have reduced hepatic steatosis and improved insulin sensitivity. RESEARCH DESIGN AND METHODS Hepatic lipids, insulin sensitivity, and hepatic insulin signaling were compared in lean (Lep(+/?)), lean-Gpat1(-/-), ob/ob (Lep(ob/ob)), and ob/ob-Gpat1(-/-) mice. RESULTS Compared with ob/ob mice, the lack of Gpat1 in ob/ob mice reduced hepatic triacylglycerol (TAG) and diacylglycerol (DAG) content 59 and 74%, respectively, but increased acyl-CoA levels. Despite the reduction in hepatic lipids, fasting glucose and insulin concentrations did not improve, and insulin tolerance remained impaired. In both ob/ob and ob/ob-Gpat1(-/-) mice, insulin resistance was accompanied by elevated hepatic protein kinase C-epsilon activation and blunted insulin-stimulated Akt activation. CONCLUSIONS These results suggest that decreasing hepatic steatosis alone does not improve insulin resistance, and that factors other than increased hepatic DAG and TAG contribute to hepatic insulin resistance in this genetically obese model. They also show that the SREBP1-mediated induction of hepatic steatosis in ob/ob mice requires Gpat1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of resistin ameliorates hyperlipidemia and hepatic steatosis in leptin-deficient mice.

Resistin has been linked to components of the metabolic syndrome, including obesity, insulin resistance, and hyperlipidemia. We hypothesized that resistin deficiency would reverse hyperlipidemia in genetic obesity. C57Bl/6J mice lacking resistin [resistin knockout (RKO)] had similar body weight and fat as wild-type mice when fed standard rodent chow or a high-fat diet. Nonetheless, hepatic stea...

متن کامل

Abrogating Monoacylglycerol Acyltransferase Activity in Liver Improves Glucose Tolerance and Hepatic Insulin Signaling in Obese Mice

Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activatio...

متن کامل

Altered Hepatic Lipid Metabolism Contributes to Nonalcoholic Fatty Liver Disease in Leptin-Deficient Ob/Ob Mice

Nonalcoholic fatty liver disease (NAFLD) is strongly linked to obesity, insulin resistance, and abnormal hepatic lipid metabolism; however, the precise regulation of these processes remains poorly understood. Here we examined genes and proteins involved in hepatic oxidation and lipogenesis in 14-week-old leptin-deficient Ob/Ob mice, a commonly studied model of obesity and hepatic steatosis. Obe...

متن کامل

Myeloid cell-specific ABCA1 deletion does not worsen insulin resistance in HF diet-induced or genetically obese mouse models.

Obesity-associated low-grade chronic inflammation plays an important role in the development of insulin resistance. The membrane lipid transporter ATP-binding cassette transporter A1 (ABCA1) promotes formation of nascent HDL particles. ABCA1 also dampens macrophage inflammation by reducing cellular membrane cholesterol and lipid raft content. We tested the hypothesis that myeloid-specific ABCA1...

متن کامل

Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1.

Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in mammalian triglyceride synthesis. DGAT1-deficient mice are resistant to diet-induced obesity through a mechanism involving increased energy expenditure. Here we show that these mice have decreased levels of tissue triglycerides, as well as increased sensitivity to insulin an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2010